NASA confirmed that it’s working with international partners and standards organizations to create a Coordinated Lunar Time (LTC) for future lunar exploration. This time standard will account for relativity and be scalable for other celestial bodies, supporting long-term missions like Artemis and commercial space activities. From the report: The lunar time will be determined by a weighted average of atomic clocks at the Moon, similar to how scientists calculate Earth’s globally recognized Coordinated Universal Time (UTC). Exactly where at the Moon is still to be determined, since current analysis indicates that atomic clocks placed at the Moon’s surface will appear to ‘tick’ faster by microseconds per day. A microsecond is one millionth of a second. NASA and its partners are currently researching which mathematical models will be best for establishing a lunar time.
To put these numbers into perspective, a hummingbird’s wings flap about 50 times per second. Each flap is about .02 seconds, or 20,000 microseconds. So, while 56 microseconds may seem miniscule, when discussing distances in space, tiny bits of time add up. “For something traveling at the speed of light, 56 microseconds is enough time to travel the distance of approximately 168 football fields,” said Cheryl Gramling, lead on lunar position, navigation, timing, and standards at NASA Headquarters in Washington. “If someone is orbiting the Moon, an observer on Earth who isn’t compensating for the effects of relativity over a day would think that the orbiting astronaut is approximately 168 football fields away from where the astronaut really is.”