Commercial Tea Bags Release Millions of Microplastics, Entering Human Intestinal Cells


A new study finds that polymer-based commercial tea bags release billions of nanoplastics and microplastics when infused. It also shows for the first time that these particles are capable of being absorbed by human intestinal cells, entering the bloodstream, and potentially affecting human health. The study by the Mutagenesis Group of the UAB Department of Genetics and Microbiology has been published in the journal Chemosphere. Medical Xpress reports: The tea bags used for the research were made from the polymers nylon-6, polypropylene and cellulose. The study shows that, when brewing tea, polypropylene releases approximately 1.2 billion particles per milliliter, with an average size of 136.7 nanometers; cellulose releases about 135 million particles per milliliter, with an average size of 244 nanometers; while nylon-6 releases 8.18 million particles per milliliter, with an average size of 138.4 nanometers. To characterize the different types of particles present in the infusion, a set of advanced analytical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-FTIR), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and nanoparticle tracking analysis (NTA) were used.

The particles were stained and exposed for the first time to different types of human intestinal cells to assess their interaction and possible cellular internalization. The biological interaction experiments showed that mucus-producing intestinal cells had the highest uptake of micro and nanoplastics, with the particles even entering the cell nucleus that houses the genetic material. The result suggests a key role for intestinal mucus in the uptake of these pollutant particles and underscores the need for further research into the effects that chronic exposure can have on human health.



Source link